KNOWLEDGE: K1.01 [2.6/2.7] QID: B637 (P2135)

High differential pressure in a demineralizer could be caused by all of the following except...

- A. resin exhaustion.
- B. resin overheating.
- C. crud buildup.
- D. high flow rate.

ANSWER: A.

TOPIC: 291007

KNOWLEDGE: K1.01 [2.6/2.7] QID: B737 (P935)

A demineralizer is being used in a water purification system. How will accumulation of suspended solids in the demineralizer affect performance of the demineralizer?

- A. The rate of resin depletion will increase.
- B. The flow rate of water through the demineralizer will increase.
- C. The differential pressure across the demineralizer will decrease.
- D. The rate of unwanted ion removal from the system will decrease.

KNOWLEDGE: K1.02 [2.8/2.9] B152 QID: (P1835)

The ion exchange efficiency of a condensate demineralizer can be determined by...

- A. sampling the inlet and outlet of the demineralizer to determine the change in conductivity.
- B. performing a calculation based on the ratio between the inlet pH divided by the outlet pH.
- C. sampling the inlet and outlet of the demineralizer to determine the difference in activity.
- D. performing a calculation based on the change in differential pressure across the demineralizer.

ANSWER: A.

TOPIC: 291007

KNOWLEDGE: K1.02 [2.5/2.6] OID: B839 (P835)

The demineralization factor of a demineralizer can be expressed as...

- A. (Inlet Conductivity) (Outlet Conductivity).
- B. (Outlet Conductivity) (Inlet Conductivity).
- C. (Inlet Conductivity) ÷ (Outlet Conductivity).
- D. (Outlet Conductivity) ÷ (Inlet Conductivity).

KNOWLEDGE: K1.02 [2.5/2.6] QID: B1437 (P2236)

To determine the demineralization factor for a demineralizer, the two parameters that must be monitored are inlet and outlet...

- A. pH.
- B. conductivity.
- C. suspended solids.
- D. pressure.

ANSWER: B.

TOPIC: 291007

KNOWLEDGE: K1.02 [2.5/2.6] QID: B2737 (P2735)

What percentage of impurities is being removed from the water passing through an ion exchanger if the ion exchanger has a decontamination factor of 25?

- A. 99%
- B. 96%
- C. 88%
- D. 75%

KNOWLEDGE: K1.02 [2.5/2.6] QID: B2837 (P936)

The ion exchange efficiency of a condensate demineralizer is determined by performing a calculation using the...

- A. change in conductivity at the outlet of the demineralizer over a period of time.
- B. change in pH at the outlet of the demineralizer over a period of time.
- C. demineralizer inlet and outlet conductivity.
- D. demineralizer inlet and outlet pH.

ANSWER: C.

TOPIC: 291007

KNOWLEDGE: K1.02 [2.5/2.6] QID: B3238 (P3235)

What percentage of ionic impurities is being removed from the water passing through an ion exchanger if the ion exchanger has a decontamination factor of 50?

- A. 98%
- B. 96%
- C. 75%
- D. 50%

KNOWLEDGE: K1.02 [2.5/2.6] QID: B3437 (P3435)

The decontamination factor (also called the demineralization factor) of a condensate demineralizer has just been determined to be 50, based on conductivity measurements.

If condensate having a conductivity of 20 μmho/cm is flowing <u>into</u> this demineralizer, which one of the following is the conductivity of the condensate at the <u>outlet</u> of the demineralizer?

- A. 0.4 μmho/cm
- B. 1.0 µmho/cm
- C. 4.0 µmho/cm
- D. 10.0 µmho/cm

ANSWER: A.

TOPIC: 291007

KNOWLEDGE: K1.02 [2.5/2.6] QID: B3637 (P3636)

The decontamination factor (or demineralization factor) of a condensate demineralizer has just been determined to be 10, based on conductivity measurements.

If condensate having a conductivity of 20 µmho/cm is flowing <u>into</u> this demineralizer, which one of the following is the conductivity of the condensate at the <u>outlet</u> of the demineralizer?

- A. $0.5 \mu mho/cm$
- $B. 2.0 \mu mho/cm$
- C. 5.0 µmho/cm
- D. 10.0 µmho/cm

KNOWLEDGE: K1.03 [2.8/2.9]

QID: B38

What adverse effect occurs due to channeling in a demineralizer?

- A. Increased demineralizer outlet conductivity because much of the resin is essentially bypassed
- B. Loss of resin due to agitation resulting from increased fluid velocity through the demineralizer
- C. Resin dryout and cracking because much of the resin is essentially bypassed
- D. Resin damage due to the increased velocity of fluid through the demineralizer

ANSWER: A.

TOPIC: 291007

KNOWLEDGE: K1.03 [2.5/2.6]

QID: B236

Channeling in a demineralizer is undesirable because the...

- A. ability of the resin bed to remove undesirable ions will decrease and cause outlet conductivity to increase.
- B. ability of the resin bed to remove suspended solids will decrease and cause outlet pH to increase.
- C. resulting high velocity fluid flow will cause agitation of the resin beads and the release of unwanted ions.
- D. resulting high velocity fluid flow can cause significant damage to resin retention elements.

KNOWLEDGE: K1.03 [2.8/2.9] QID: B838 (P1636)

Which one of the following, if processed through a demineralizer, will rapidly reduce the effectiveness of the demineralizer?

- A. Oily water
- B. Condensate
- C. Makeup water
- D. Radioactive water

ANSWER: A.

TOPIC: 291007

KNOWLEDGE: K1.03 [2.8/2.9]

QID: B1038.

Which one of the following refers to the condition in which large portions of a demineralizer resin bed are bypassed, thereby allowing waterborne impurities to reach the outlet?

- A. Channeling
- B. Leaching
- C. Exhaustion
- D. Mineralization

KNOWLEDGE: K1.03 [2.8/2.9] QID: B1237 (P2035)

Which one of the following conditions will lead to channeling in a demineralizer?

- A. Suspended solids and insoluble particles forming a mat on the surface of the resin bed.
- B. A sudden 10°F decrease in the temperature of the influent to the demineralizer.
- C. Exhaustion of the resin bed due to high conductivity of the demineralizer influent.
- D. Operation of the demineralizer with influent flow rate at 10% below design flow rate.

ANSWER: A.

TOPIC: 291007

KNOWLEDGE: K1.04 [2.8/2.9]

QID: B118

The purpose of a mixed-bed demineralizer is to...

- A. raise the conductivity of water with little effect on pH.
- B. reduce the conductivity of water with little effect on pH.
- C. increase the pH of water by reducing the number of positively charged ions in it.
- D. decrease the pH of water by increasing the number of negatively charged ions in it.

KNOWLEDGE: K1.05 [2.4/2.5] QID: B1138 (P1535)

A condensate demineralizer differential pressure (D/P) gauge indicates 4 psid at 50% flow. Over the next two days plant power changes have caused condensate flow to vary between 25% and 100%.

Which one of the following combinations of condensate flow and demineralizer D/P, observed during the power changes, indicates an increase in the accumulation of corrosion products in the demineralizer?

CO	NDENSATE <u>FLOW</u>	DEMINERALIZER <u>D/P (PSID)</u>
A.	100%	15.0
B.	75%	9.0
C.	60%	5.0
D.	25%	2.0

NRC Generic Fundamentals Examination Question Bank--BWR July 2004

TOPIC: 291007

KNOWLEDGE: K1.05 [2.4/2.5] QID: B1539 (P1537)

A higher than expected differential pressure across an operating demineralizer will be caused by...

- A. depletion of the cation resin.
- B. channeling through the resin bed.
- C. insufficient resin backwash.
- D. decreased demineralizer outlet conductivity.

KNOWLEDGE: K1.05 [2.4/2.5] QID: B1736 (P1736)

A condensate demineralizer differential pressure (D/P) gauge indicates 6 psid at 50% flow rate. Which one of the following combinations of condensate flow and demineralizer D/P observed later at various power levels indicates an <u>increase</u> in the accumulation of insoluble corrosion products in the demineralizer?

	CONDENSATE FLOW	DEMINERALIZER <u>D/P (PSID)</u>
A.	100%	23.5
B.	75%	16.5
C.	60%	8.5
D.	25%	1.5

KNOWLEDGE: K1.05 [2.4/2.5] QID: B2237 (P635)

How does demineralizer differential pressure indicate the condition of a demineralizer resin bed?

- A. Low differential pressure indicates flow blockage in the demineralizer.
- B. Low differential pressure indicates that the demineralizer resin bed is exhausted.
- C. High differential pressure indicates flow blockage in the demineralizer.
- D. High differential pressure indicates that the demineralizer resin bed is exhausted.

KNOWLEDGE: K1.05 [2.4/2.5] QID: B2338 (P2335)

A condensate demineralizer differential pressure (D/P) gauge indicates 4.0 psid at 50% flow. Over the next two days plant power changes have caused condensate flow to vary between 25% and 100%.

Which one of the following combinations of condensate flow and demineralizer D/P, observed during the power changes, indicates an increased accumulation of corrosion products in the demineralizer?

CONDENSATE FLOW		DEMINERALIZER <u>D/P (PSID)</u>	
A.	100%	15.0	
В.	75%	9.0	
C.	40%	3.0	
D.	25%	1.0	

KNOWLEDGE: K1.05 [2.4/2.5] QID: B2638 (P2235)

A condensate demineralizer differential pressure (D/P) gauge indicates 4 psid at 50% flow rate. Which one of the following combinations of condensate flow and demineralizer D/P observed at various power levels indicates an <u>increase</u> in the accumulation of insoluble corrosion products in the demineralizer?

CO	NDENSATE FLOW	DEMINERALIZER D/P (PSID)
A.	25%	1.0
B.	60%	6.5
C.	75%	9.0
D.	100%	15.5

KNOWLEDGE: K1.05 [2.4/2.5]

QID: B2938

A condensate demineralizer differential pressure (D/P) gauge indicates 9 psid at 50% flow. Over the next two days, plant power changes cause condensate flow to vary between 10% and 100%.

Which one of the following combinations of condensate flow and demineralizer D/P, if observed during the power changes, would indicate a detectable increase in the accumulation of corrosion products in the demineralizer?

CC	ONDENSATE FLOW	DEMINERALIZER <u>D/P (PSID)</u>
A.	10%	0.3
B.	25%	3.3
C.	75%	20.3
D.	100%	35.3

KNOWLEDGE: K1.06 [2.7/2.7]

QID: B238

The temperature of the water passing through a demineralizer must be controlled because excessively hot water will...

- A. increase the ion exchange rate for hydronium ions, thereby changing effluent pH.
- B. degrade the corrosion inhibitor applied to the inner wall of the demineralizer.
- C. result in excessive demineralizer retention element thermal expansion, thereby releasing resin
- D. reduce the affinity of the demineralizer resin for ion exchange.

ANSWER: D.

TOPIC: 291007

KNOWLEDGE: K1.06 [2.7/2.7]

QID: B438

There is a temperature limit on the water entering a demineralizer because excessively hot water...

- A. will decompose the resin beads.
- B increases the potential for channeling.
- C. causes the filter element to swell and release the resin.
- D. will dislodge and wash the resin fines off the filter element.

TOPIC: KNOWLEDGE: QID:	K1.07 [2.3/2.5]	
	n a mixed-bed demineralizer releases desirablendesirable ions from solution.	ions into solution
A. negative; nega	ative	
B. negative; posi	tive	
C. positive; nega	tive	
D. positive; posit	tive	
ANSWER: D.		
TOPIC: KNOWLEDGE: QID:	K1.07 [2.3/2.5]	
The anion resin in while removing u	n a mixed-bed demineralizer releases desirablendesirable charged ions from solution.	ions into solution
A. hydroxide; ne	gatively	
B. hydroxide; po	sitively	
C. hydrogen; neg	gatively	
D. hydrogen; pos	sitively	
ANSWER: A.		

KNOWLEDGE: K1.07 [2.3/2.5]

QID: B1637

Which one of the following will decrease the time required for a demineralizer to reduce by one-half the ionic impurities in a closed process water system?

- A. Divert 50% of the process water to bypass the demineralizer.
- B. Reverse the flow of process water through the demineralizer.
- C. Increase the temperature of the process water from 100°F to 110°F.
- D. Decrease the flow rate of the process water from 105 gpm to 90 gpm.

ANSWER: C.

TOPIC: 291007

KNOWLEDGE: K1.07 [2.3/2.5]

QID: B1639

If a dilute sodium chloride water solution is passed through an ideal mixed-bed demineralizer, the effluent stream would consist of...

- A. a sodium hydroxide solution.
- B. a hydrogen chloride solution.
- C. a sodium hypochlorite solution.
- D. pure water.

KNOWLEDGE: K1.07 [2.3/2.5]

QID: B1738

Which one of the following describes the process of backwashing a mixed-resin deep bed demineralizer?

- A. Alternating the flow of dilute acidic and caustic solutions through the demineralizer to remove suspended solids and colloidal matter
- B. Alternating the flow of dilute acidic and caustic solutions through the demineralizer to remove ionic impurities
- C. Reversing flow of pure water through the demineralizer to remove suspended solids and colloidal matter
- D. Reversing flow of pure water through the demineralizer to remove ionic impurities

ANSWER: C.

TOPIC: 291007

KNOWLEDGE: K1.07 [2.3/2.5]

OID: B1838

When a mixed-bed demineralizer resin is exhausted, the resin should be replaced or regenerated because...

- A. ions previously removed by the resin will be released into solution.
- B. the resin will fracture and possibly escape through the retention screens.
- C. particles previously filtered out of solution will be released.
- D. the resin will physically bond together, thereby causing a flow blockage.

KNOWLEDGE: K1.07 [2.3/2.5] QID: B2138 (P2836)

Refer to the drawing of a parallel demineralizer loop that is currently aligned for normal flow direction through the demineralizer (see figure below).

A minor seawater leak has occurred into the process water system, which is a closed system. Which one of the following will decrease the time required for the demineralizer loop to reduce the concentration of ionic impurities in the process water system?

- A. Reverse the flow direction through the demineralizer.
- B. Divert 50% of the loop flow to bypass the demineralizer.
- C. Increase the flow rate in the loop from 95 gpm to 105 gpm.
- D. Decrease the temperature in the loop from 110°F to 100°F.

KNOWLEDGE: K1.07 [2.3/2.5]

QID: B2438

Which one of the following describes the process of regenerating a mixed-resin deep bed demineralizer? (Assume the demineralizer has already been backwashed.)

- A. Alternating the flow of acidic and caustic solutions through the demineralizer to remove suspended solids and colloidal matter.
- B. Alternating the flow of acidic and caustic solutions through the demineralizer to remove ionic impurities.
- C. Reversing flow of pure water through the demineralizer to remove suspended solids and colloidal matter.
- D. Reversing flow of pure water through the demineralizer to remove ionic impurities.

KNOWLEDGE: K1.07 [2.3/2.5] QID: B3739 (P3736)

Refer to the drawing of a parallel demineralizer loop that is currently aligned for normal flow direction through the demineralizer (see figure below).

Which one of the following is most likely to cause a decrease in the demineralizer decontamination factor for ionic impurities?

- A. Divert 50% of the demineralizer loop flow to bypass the demineralizer.
- B. Decrease the process water system pressure from 125 psig to 75 psig.
- C. Decrease the flow rate in the demineralizer loop from 105 gpm to 65 gpm.
- D. Increase the temperature in the demineralizer loop from 140°F to 200°F.

KNOWLEDGE: K1.08 [2.6/2.6] QID: B337 (P1836)

A demineralizer that is continuously exposed to flowing water with high concentrations of suspended solids will <u>first</u> develop an increase in the...

- A. conductivity at the demineralizer outlet.
- B. decontamination factor of the demineralizer.
- C. differential pressure across the demineralizer.
- D. pH at the demineralizer outlet.

ANSWER: C.

TOPIC: 291007

KNOWLEDGE: K1.08 [2.6/2.6] QID: B539 (P836)

A lower than expected differential pressure across a mixed-bed demineralizer is an indication of...

- A. depletion of the resin.
- B. channeling through the resin bed.
- C. improper resin regeneration.
- D. a decrease in inlet conductivity.

KNOWLEDGE: K1.08 [2.6/2.6] QID: B639 (P1036)

As the operating time of a demineralizer increases, the differential pressure across the demineralizer...

- A. decreases due to resin breakdown.
- B. decreases due to resin bead surface erosion.
- C. increases due to trapping of suspended solids.
- D. increases due to depletion of ion exchange sites.

ANSWER: C.

TOPIC: 291007

KNOWLEDGE: K1.09 [2.7/2.7] QID: B39 (P535)

Which one of the following is an indication of resin exhaustion in a demineralizer:

- A. An increase in suspended solids in the effluent
- B. A decrease in the flow rate through the demineralizer
- C. An increase in the conductivity of the effluent
- D. An increase in the differential pressure across the demineralizer

NRC Generic Fundamentals Examination Question Bank--BWR July 2004

TOPIC: 291007

KNOWLEDGE: K1.09 [2.7/2.7] QID: B239 (P2637)

A result of proper demineralizer operation on water with ionic impurities is that the exiting water will <u>always</u> have a...

- A. higher pH.
- B. lower pH.
- C. higher conductivity.
- D. lower conductivity.